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Abstract 

 

This paper reports a quasi 3D numerical simulation in a reach of the Yangtze River near 

The Nanjing City, China, aiming to develop a numerical tool for modeling turbulent 

flows and pollutant transport in natural waters. The recently built depth-integrated two-

equation turbulence   ~
~
k  model, together with ~

~
k  and wk ~~

  models, were 

used to close non-simplified quasi 3D hydrodynamic fundamental governing equations. 

The discretized equations were solved by advanced multi-grid iterative method under 

non-orthogonal body-fitted coarse and fine two-levels’ grids with collocated variable 

arrangement. Except for steady flow and transport computation, the processes of 

contaminant inpouring and plume development, caused by the side-discharge from two 
tributaries, also have been investigated numerically. The used three closure approaches 

are suitable for modeling strong mixing turbulence. The established  ~
~
k   model with 

higher order of magnitude of transported variable   provides a possibility to elevate the 

computational precision. Based on the developed hydrodynamic model, a CFD 

(Computational Fluid Dynamics) software, namely Q3drm1.0, was developed. This tool 

focuses on the refined simulations of the steady and unsteady problems of flow and 

temperature/contaminant transports in complicated computational domains with the 

strong ability to deal with different types of discharges: side-discharge, point-source 

discharge/point-sink, and area-source discharge from the slope along bank. In this paper, 

only the study of side-discharge is presented. 

Introduction 
 
Almost all flows in natural rivers are turbulence. Dealing 
with the problems of turbulence tightly related to stream 
pollutions is challenging for scientists and engineers, 
because of their damaging effect on our fragile 
environment and limited water resources. It is important 
to develop adequate mathematical models, turbulence 
closure models, numerical methods and corresponding 
analytical tools for timely simulating and predicting 
contaminant transport behaviors in natural and artificial 
waters. 

Although the significance of modeling turbulent flows 
and contaminant transport phenomena with a high 
precision is clear, the numerical simulation and 
prediction for natural waters with complex geometry and 
variable bottom topography are still unsatisfied. This is 
mainly due to the inherent complexity of the problems 
being considered. Any computation and simulation of 
flow and transport processes critically depends on 
following four elements: to generate a suitable 
computational domain with the ability to deal with non-
regular geometrical boundaries, such as curved 
riversides and island boundaries; to establish practical 

turbulence closure models with higher precision and 
minor numerical error; to adopt efficient computational 
method and algorithm, and to develop corresponding 
numerical tool, respectively. 

Numerous environmental flows can be considered as 
shallow, i.e., the horizontal length scales of the flow 
domain are much larger than the depth. Typical 
examples are found in lowland rivers, lakes, coastal 
areas, oceanic and stratified atmospheric flows. Depth-
integrated mathematical models are frequently used for 
modelling the flow and contaminant transport in well-
mixed shallow waters. However, many models used in 
practice merely consider the depth-integrated turbulent 
viscosity and diffusivity through constants or through 
simple phenomenological algebraic formulas (Choi and 
Takashi 2000; Lunis et al. 2004; Vasquez 2005; Kwan 
2009; Viparelli 2010), which are estimated to a great 
degree according to the modeller‟s experience. Although 
some practical quasi 3D hydrodynamic models are really 
closed by depth-integrated two-equation closure 
turbulence model, they almost all concentrate on the 
investigations    and   applications   of  traditional   depth- 
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integrated ~
~
k  model (Rodi et al. 1980; Chapman and 

Kuo 1982; Mei et al. 2002; Johnson et al. 2005; Cea et al. 
2007; Hua et al. 2008; Kimura et al. 2009; Lee et al. 
2011), which appeared already beyond 30 years. It is 
well known that the order of magnitude of transported 

variable ~  of ~
~
k  model is very low indeed. 

Recent development of turbulence modeling theory 
has provided more advanced and realistic closure 
models. From an engineering perspective, two-equation 
closure turbulence models can build a higher standard 
for numerically approximation of main flow behaviors and 
transport phenomena in terms of efficiency, extensibility 
and robustness (Yu, 2013). Unfortunately, the „standard‟ 
two-equation closure models, used widely in industry, 
cannot be directly employed in quasi 3D modeling. The 
depth-integrated turbulence model, based on the „standard‟ 
two-equation closure model, needs to be established and 
investigated in advance. 

Except for the depth-integrated ~
~
k  model closure, 

newly established by the author, current simulations still 
adopt the closure approaches of traditional depth-

integrated ~
~
k  model and depth-integrated wk ~~

  

model, respectively. The depth-integrated ~
~
k  model 

was stemmed from the most common „standard‟ k-ω 
model, originally introduced by Saffman (1970) but 
popularized by Wilcox (1998). In this paper, the results, 
computed by the three depth-integrated two-equation 
turbulence models, were compared each other. Such 
example, however, hardly exists for the simulation of 
contaminant transport in natural waters. Modeling by using 
different two-equation closure approaches will certainly 
increase the credibility of computed results (Yu, 2013). 

On the other hand, recent advancements in grid 
generation techniques, numerical methods and IT 
techniques have provided suitable approaches to 
generate non-orthogonal boundary-fitted coordinates 
with collocated grid arrangement, on which the non-
simplified hydrodynamic fundamental governing 
equations can be solved by multi-grid iterative method 
(Ferziger and Peric 2002). This paper describes a quasi 
3D hydrodynamic simulation of flow and contaminant 
transport in a river reach of the Yangtze River, with the 
aim to develop the grid-generator, flow-solver and GUI 
(Graphical User Interface). The developed software, 
named Q3drm1.0, provides three selectable depth-
integrated two-equation closure turbulence models, and 
can refinedly solve quasi 3D flow and contaminant 
transport phenomena in complex natural and artificial 
waters. 
 
 
Hydrodynamic Fundamental Governing Equations 
 
The complete, non-simplified fundamental governing 
equations of quasi 3D computation, in terms of 
coordinate-free vector forms derived by using vertical 
Leibniz    integration  for    a   Control  Volume  (CV,  an  

 
 
 
 
arbitrary quadrilateral with center point P), considering 
the variation of the bottom topography and water 
surface and neglecting minor terms in the depth-
averaging procedure, can be written as follows: 
 

 








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grad   (1) 

 

where   is the CV‟s volume; S  is the face; v


 is the 

depth-integrated velocity vector; the superscript “  ” 

indicates that the value is strictly depth-integrated;   is 

any depth-integrated conserved intensive property (for 

mass conservation, 1  ; for momentum conservation, 

  is the components in different directions of v


; for 

conservation of a scalar,   is the conserved property 

per unit mass);   is the diffusivity for the quantity  ; q  

denotes the source or sink of  ; and h and  are local 

water depth at P and density, respectively. 

For the momentum conservation of Eq. (1),  = eff~  

(depth-integrated effective viscosity); for temperature or 

concentration transport,  = t,

~
  (temperature or 

concentration diffusivity), where the superscript “~” 
indicates the quantity characterizing depth-integrated 

turbulence. The source (sink) term q  for momentum 

conservation may include surface wind shear stresses, 
bottom shear stresses, pressure terms and additional 
point sources (or point sinks). 
 
 

Depth-Integrated Turbulence Closure Models 
 

The depth-integrated effective viscosity eff~  and diffusivity 

t,

~
 , appeared in Eq. (1), are dependent on the 

molecular dynamic viscosity   and depth-integrated 

eddy viscosity t
~ : teff  ~~   and ttt ,, /~~

   , 

where ,t  is the turbulence Prandtl number for 

temperature diffusion or Schmidt number for 

concentration diffusion, and t
~  is a scalar property and 

normally determined by two extra transported variables. 
Recently, the author established a new depth-integrated 

two-equation closure turbulence model, ~
~
k , based 

on the „standard‟ k -  model (in which ω is the special 

dissipation rate), originally introduced by Saffman (1970) 

but popularized by Wilcox (1998). The „standard‟ k -  

turbulence model has been used in engineering 
researches (Riasi et al. 2009; Kirkgoz et al. 2009). In 

depth-integrated ~
~
k  model, the turbulent viscosity is 

expressed by: 
 

        ~/
~~ kt                    (2) 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Kirkgoz%2C+Mehmet+Salih%29


 

 
 
 
 

where k
~

 and ~  stand for the depth-integrated turbulent 

kinetic energy and special dissipation rate of turbulence 
kinetic energy in the depth-integrated sense. They are 
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determined by solving two extra transport equations, i.e., 

the k
~

-eq. and ~ -eq, respectively. (Yu and Yu, 2009): 
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where 
kS  and S  are the source-sink terms, 
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~  is the 

production of turbulent kinetic energy due to the 
interactions of turbulent stresses with horizontal mean 

velocity gradients. The values of empirical constants α, , 
* , *

k , and *

  in Eq. (3) through Eq. (4) are the same 

as in the „standard‟ k -  model: 5/9, 0.075, 0.9, 2, and 2. 

According to the dimensional analysis, the additional 

source terms kvP  in k-eq. (3) and vP  in ω-eq. (4) are 

mainly produced by the vertical velocity gradients near 
the bottom, and can be expressed as follows: 
 

        huCP kkv /3
* , 

22

* / huCP v     (5) 

 
 
 
 

 
 
while the local friction velocity u* is equal to 

 C u vf

2 2 , the empirical constant Cω for open 

channel flow and rivers can be expressed as: 
 

         )/(
2/1*

fCeCC     (6) 

 
where Cf represents an empirical friction factor and e* is 
the dimensionless diffusivity of the empirical formula for 

undisturbed channel/river flows 
~ t =e*U*h with U* being 

the global friction velocity. 

Except for the newly developed ~
~
k  turbulence model 

mentioned above, the author also uses depth-integrated 

~
~
k  model and wk ~~

  model, to close the 

fundamental governing equations in the current 

computations. The ~
~
k  model was suggested by 

McGuirk and Rodi as early as in 1977: 
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where kS  and S  are the source-sink terms, t
~  can be 

expressed as:  
 

 
~/

~~ 2kCt      (9) 

 

where ~  stands for dissipation rate of k
~

. The values of  

empirical constants C ,  k ,  ,  1C   and  2C   in  Eqs. 

(7-9) are the same as the „standard‟ k-ε model, i.e. equal 
to 0.09, 1.0, 1.3, 1.44 and 1.92, respectively. The 
additional source terms Pkv and Pεv in Eqs. (7) and (8) 
can be written by: 
 

P C u hkv k * /3
, 

24

v huCP /*    (10) 

 
where the empirical constants Ck and Cε for open 
channel flow and rivers are: 
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Figure 1: Comparison between calculated concentration contour and black-water 

plume outline. 

 
 
 
 

 C Ck f 1/ , )/(
2/1*4/32/1

2 eCCCC f        (11) 

                 
 
 The third used depth-integrated second-order 

closure wk ~~
  model was previously developed by the  

 
 

author of the present paper and his colleague (Yu and 

Zhang 1989). This model originated from the revised k - w  

model developed by Ilegbusi and Spalding (1982). The two 

extra transport equations of this model (i.e., the k
~

-eq. 

and the w~ -eq.) should be: 
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where 
kS  and wS  are the source-sink terms; function 

f=  iw xLC  /1 '

2  and L is the characteristic distance 

of turbulence;   stands for mean movement vorticity. In 

wk ~~
  model, the turbulent viscosity is defined as:  

 

    
2/1~/

~~ wkt       (14) 

 

where w~  is depth-integrated time-mean-square vorticity 

fluctuation of turbulence. The transport equations (the 

k
~

-eq. and w~ -eq.) should be solved in this model as 

well. The values of empirical constants C ,  k ,  w , 

C w1 , C w2 , C w2

'
 and C w3  are the same as those of 

„standard‟ k-w model, i.e., equal 0.09, 1.0, 1.0, 3.5, 0.17, 
17.47 and 1.12, respectively. The corresponding 
additional source terms Pkv and Pwv, also mainly due to 
the vertical velocity gradients near the bottom, and can 
be expressed as: 
 

            huCP kkv /3
*                                        (15) 

The empirical constants Cw for open channel flow and 
rivers can be written as: 

 

 2/3*4/32/3

2 / eCCCC fww     (16) 

 
The mathematical model and turbulence models, 
developed by the author, have been numerically 
investigated with laboratorial and site data for different 
flow situations (Yu and Zhang 1989; Yu and Righetto 
2001). In the established mathematical model, the 
original empirical constants of three depth-integrated 
turbulence models, suggested by their authors, are 
employed and have not been changed never.  

Figure 1 displays a comparison between the fine light-
blue concentration contour with 35mg/L, calculated by 

using ~
~
k  model closure on fine grid and plotted by 

the field browser of Q3drm1.0, and the outline of black-
water plume, shown on the Google satellite map. In this 
computation, one reach of the Amazon River, near the 
Manaus City, Brazil, has been computed, where the 
Negro River flows into the Solimões River from the North  
and the West to form the Amazon River below this city.  



 

 
 
 
 

 
 
Figure 2: Map, plotted by interface. 

 
 
 

The confluent tributaries, in the Amazon‟s water 
system, usually have concentration difference in 
comparison with the mainstream, caused by the humus 
in tropical rain forest (produced by tropic rains). The 
Negro River, however, is the largest left tributary of the 
Amazon and the largest black-water river in the world. In 
this figure, the coarse yellow lines demonstrate the 
outline of computational domain. It is clear that the 
simulated depth-integrated contour, however, is well 
coincident with the outline of black-water plume. 
 
 
Grid Generation 
 
In this paper, one reach of the Yangtze River has been 
computed by using the grid-generator and flow-solver, 
written in FORTRAN Language, where two small 
tributaries flow into the river reach from the left and right 
banks. The confluent tributaries have a concentration 
difference in comparison with the mainstream, caused by 
local industrial and domestic discharges. With the help of 
the developed software, it is possible to determine the 
scale of digital map (Google Earth), to collect 
conveniently geometrical data, including the positions of 
two riversides, four boundaries of two islands and the 
location of confluent tributaries‟ sections, and finally to 
generate one text file. In this file, all of messages, which 
illustrate necessary control variables and characteristic 
parameters, including those on four exterior boundaries 
(west and south inlet section, east and north outlet 
section, west and east riversides) are contained, and can 
be read by grid-generator to generate the expectant 
coarse and fine grids (two levels‟ grids). 

Figure 2 demonstrates the digital map, on which the 
developed interface of Q3drm1.0 has divided the 
computational river reach into 69 sub-reaches with 70 
short cross-river lines (i.e., NLrs=70). It is notable that 
the  cross-river  lines  between  the  riverside  and  island  
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Figure 3: Coarse grid. 

 
 
 
boundary have been redrawn, in order to involve the 
islands‟ configurations. Figure 3 presents the generated 
body-fitted non-orthogonal coarse grid, drawn by the 
grid-browser of Q3drm1.0, with the resolution of 184 
nodal points in i-direction and 20 nodal points in j-
direction an, respectively. In the generated mesh, the 
nodal points on transversal grid lines are uniform. The 
total length of the calculated river reach is 26.172km. 
The flow direction is from the West and South to the East 
and North. The tributaries feed into the mainstream on 
the south riverside, with the numbers of nodal points 
from i=29 on the coarse computational grid, and on the 
north riverside, with the number of nodal points from 
i=104 to i=105, respectively. The two „connected‟ islands 
start at (i=37, j=4) and (i=107, j=8), and ends at (i=116, 
j=4) and (i=128, j=8) on the same mesh, where 
„connected‟ means NICVS(2)<NICVE(1), i.e. 107<116. It 
is clear that in this computational example, some cross-
river lines have to connect with two islands. The 
developed grid-generator generated two layers‟ grids, on 
which all of geometric data, necessary in the later 
calculation of flow and contaminant transport, must be 
stored and then can be read by the developed flow-
solver. The resolution of the fine grid is 366×38, 
displayed on Figure 4. This means that one volume cell 
on the coarse grid was divided into four volume cells on 
the fine grid. Figure 5 represents the bottom topography 
on fine grid, drawn by the field browser of Q3drm1.0. 
During the calculation, the variation of bottom 
topography was considered. 
 
 
Solutions of Flow and Side Discharge 
 
The behaviors of flows and transport were simulated by 
using the developed flow-solver, in which the SIMPLE 
(Semi-Implicit Method for Pressure-Linked Equation) 
algorithm    for   FVA  (Finite Volume Approach),  Guass‟ 
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Fig. 4 Fine grid.        

 
 
 

 
 

Fig. 5 Bottom topography. 
 
 
 
divergence theorem, ILU (Incomplete Lower-Upper) 
decomposition, PWIM (Pressure Weighting Interpolation 
Method), SIP (Strongly Implicit Procedure), under 
relaxation and multi-grid iterative method have been 
used. The hydrodynamic fundamental governing 
equations were solved firstly at the coarse grid and then 
at the fine grid, in the following sequence for each grid 

level: two momentum equations ( u -eq. and v -eq.), one 

pressure-correction equation (
'p -eq.), one 

concentration transport equation ( 1C -eq.), and two 

transport equations (i.e., the k
~

-eq. and ~ -eq.; or k
~

-eq. 

and w~ -eq.; or k
~

-eq. and ~ -eq.), respectively.  

The calculated main stream flow-rate is 20,000m
3
/s, 

while the width, area and mean water-depth of the inlet 
section are 1211m, 7023m

2
 e 5.8m. The empirical 

friction factor  (Cf)  equals  0.00175.  The  flow-rates  and 

 
 
 
 
concentration differences of tributaries are 500m

3
/s and 

50mg/L, and 250m
3
/s and 50mg/L, respectively. Three 

depth-integrated two-equation closure turbulence models, 

i.e., the ~
~
k , wk ~~

  and ~
~
k  models, are adopted 

to close the quasi 3D hydrodynamic model. The 
turbulent variables at the inlet sections can be calculated 

by empirical formulae, i.e., 
0

~
k , 

0

~ , 
0

~w , 0
~  are 

0.179m
2
/s

2
, 0.00698m

2
/s

3
, 1.084/s

2
, 0.432/s, and 

1

~
trik ( 2

~
trik ), 1

~
tri ( 2

~
tri ), 1

~
triw ( 2

~
triw ), 1

~
tri ( 2

~
tri ) equal 

0.025m
2
/s

2
(0.016m

2
/s

2
), 0.00107m

2
/s

3
(0.00042m

2
/s

3
), 

0.449/s
2
(0.1778/s

2
), 0.474/s(0.298/s), respectively. On 

the outlet section, the variables satisfy constant gradient 
condition. The wall function approximation was used for 
determining the values of velocity components and 
turbulent variables at the nodal points in the vicinity of 
riversides and islands‟ boundaries. 

Due to the existence of two islands in mesh, the 
values of the under-relaxation factors for velocity 
components, pressure, concentration and two turbulence 
parameters are usually lower than those while no exists 
any island in the mash. Generally, for non-existence of 
island, they are 0.6, 0.6, 0.1, 0.7, 0.7 and 0.7. In this 
example, these factors are 0.5, 0.5, 0.06, 0.7, 0.7 and 
0.7, respectively. The maximum allowed numbers of 
inner iteration for solving velocity components, pressure, 
concentration and two turbulent variables are 1, 1, 20, 1, 
1 and 1. The convergence criterions for inner iteration 
are 0.1, 0.1, 0.01, 0.1, 0.01 and 0.01, respectively. The α 
parameter of the Stone‟s solver is equal to 0.92. The 
normalize residuals for solving velocity field, pressure 
field, concentration field and the fields of two transported 
variables of turbulence are all less than pre-determined 
convergence criterion (1.e-3). 

The simulation obtained various 2D and 3D 
distributions of flow, pressure, concentration and 
turbulent variables and parameters, which are useful to 
analyze interested problems in engineering. Q3drm1.0 
provides powerful profile browser, field browser and 3D 
browser for plotting and analyzing computational results. 

A part of results, simulated by using ~
~
k , wk ~~

  and 

~
~
k  models on the fine grid, are presented from 

Figure 6 to Figure 12. Figure 6 display the results, 

calculated by using ~
~
k  closure model and drawn by 

the field browser, with a: flow pattern, b: streamlines, c: 

pressure field, d: concentration contours, e: k
~

 field and f: 

~  field, respectively. Figure 6d illustrates that two 

contaminant plumes well develop along both the right 
riverside and left riverside at the lower reaches of two 
tributaries‟ outlet sections. The distributions of the same 
depth-integrated physical variables and turbulent 

variable k
~

, calculated by ~
~
k  and wk ~~

  turbulence 

models, are similar to Figures 6a-6e. Figures 7a, 7b and 

7c demonstrate the 3D distributions of k
~

, calculated by 

using these  three   depth-integrated  turbulence  models  



 

 
 
 
 

 
 

  
a                                                        b 

  
c                                                         d 

  
e                                                         f 
 
 

 
 

Fig. 6 A part of results, calculated by ~
~
k  model. 

 
 
 
and drawn by the 3D browser. They are quite similar 
each other, with the maximum values: 0.9259m

2
/s

2
 for 

~
~
k  modeling (7a), 0.9037m

2
/s

2
 for ~

~
k  modeling 

(7b) and 0.9021m
2
/s

2
 for wk ~~

  modeling (7c), 

respectively. Figures 8a, 8b and 8c present the 3D 

distributions     of   ~ ,  ~   and  w~ ,  which  are  different 
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each other, because of the different definitions of the 
used second transported variables in current 

computations. Actually, the ~  value, shown in Figure 8b, 

ranges only from 1.012e-5 to 0.0335m
2
/s

3
; however, the 

w~  and ~  range from 1.065e-4 to 1.363/s
2
 and from 

1.034e-2 to 1.149/s in Figure 8c and Figure 8a 
respectively. Figures 9a, 9b and 9c illustrate the 3D 

distributions of effective viscosity eff~ , while the depth-

integrated turbulent eddy viscosity t
~  was calculated by 

using Eq. (2) for ~
~
k  modeling (9a), Eq. (9) for ~

~
k  

modeling (9b) and Eq. (14) for wk ~~
  modeling (9c), 

respectively. Basically, they are similar each other, 

specially for ~
~
k  and wk ~~

  modeling, while the 

maximum values of eff~  are 5115.43Pa.s (9b) and 

5113.06Pa.s (9c); but the same value for ~
~
k  

modeling is 5175Pa.s (9a). Figure 10 shows the 
distributions of the production term of turbulent kinetic 

energy, with the maximum values of 
kP  87.49Pa.m/s for 

~
~
k  modeling (10a), 87.093Pa.m/s for ~

~
k  

modeling (10b) and 86.606Pa.m/s for wk ~~
  modeling 

(10c). They are also similar each other. Figures 11a and 
11b display the comparisons of concentration profiles 
along the centers of the volume cells at i from 1 to 366 
and j=2 (i.e., along a curved line from the outlet to the 
inlet near the east riverside) and at i=225 and j from 1 to 
38 (i.e., along a transversal section of i=225, which 
passes through two islands in computational domain), 

calculated by the depth-inegrated ~
~
k , wk ~~

  and 

~
~
k  turbulence models, respectively. Figure 12a 

demonstrates the comparisons between ~ , w~  and ~  

along the curved line at j=3, and Figure 12b the 
comparisons of these three variables at i=225‟s 
transversal section. It is well known that the orders of 

magnitudes of ~ , w~  and ~ , used in three turbulence 

models, have significant differences indeed. 
 
 
Contaminant Plume Development at the Beginning 
of Discharge 
 
In order to well understand the development process of 
pollutant plume, a special simulation was performed by 

using ~
~
k  model for the case described as follows. 

Supposing the contaminant concentrations of two 
confluent tributaries firstly to equal zero, and then, the 
value of concentration instantaneously reaches 50mg/L 
at Time=0, while the flow-rates, either of main stream or 
of tributaries, keep constant. Figures 13a-f illustrate the 
plumes‟ developments and variations in the lower 
reaches of two tributaries‟ outlet sections, where Figure 
13a presents the situation of clean water confluence; 
Figures     13b-f    display    the  process  of  contaminant  
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Figure 7: k
~

 distributions, calculated by ~
~
k , ~

~
k  and wk ~~

  models. 

 
 
 
inpouring and plumes‟ development, with an equal time 
difference Δt each other. 
 
 
Discussions and Conclusions 
 
Two-equation models are one of the most common types 
of turbulence closure models. The so-called „standard‟ 
two-equation turbulence models, adopted widely in 
industry, cannot be directly used in depth-integrated 
modeling. Till now, the vast majority of quasi 3D 
numerical tools in the world, using two-equation 
turbulence model to solve complete and non-simplified 
hydrodynamic fundamental governing equations, just 
can provide only one depth-integrated turbulence model 

( ~
~
k ) for users, which appears already beyond 30 

years. However, the advanced commercial CFD 
(Computational Fluid Dynamics) software for „standard‟ 
2D and 3D modeling can provide several, even up to 
dozens of two-equation closure turbulence models, 

because there is non-existent a „universal‟ turbulence 
closure model in turbulence modeling theory. Moreover, 
two-equation turbulence models are also very much still 
an active area of research and new refined two-equation 
models are still being developed. This situation should 
be changed as soon as possibly. 

At present, the k-ω model, just like the k-ε model, has 
become industry standard model and is commonly used 
for most types of engineering problems. Therefore, the 

establishment of depth-integrated ~
~
k  turbulence 

model and corresponding numerical investigation and 
comparison with existing depth-integrated turbulence 
models, presented in this paper, are significant. 

Two levels‟ grids, one coarse mesh and one fine mesh, 
were used in current computation. The simulation on 
these two grids can satisfy the computational demand. If 
it is necessary, by setting the number of grid levels at 
three in the developed software, for example, the 
computations not only on coarse and fine grids but also 
on finest grid can     be    realized.  The  selection  of  the  
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Figure 8: ~ , ~  and w~  distributions. 

 
 
 
number of grid levels depends on the solved problems, 
and also on modeler‟s requirements. 

The solved depth-integrated concentration variable in 
current computation is the contaminant concentration 
difference between confluent tributaries and main stream 
(50mg/L). However, other indexes of discharged 
contaminant, such as COD and BOD, can be also 
considered as the solved variable. The developed 
software possesses the ability to simultaneously solve 
two concentration components in one calculation, which 
are produced by industrial and domestic discharges. 

Figure 7 demonstrates that the distributions of 

turbulent variable k
~

, calculated by three turbulence 

models, vary strongly in the computational domain, but 
quite similar to one another. However, the characteristics 

of the distributions of ~ , ~  and w~ , shown in Figures 

8a, 8b and 8c, respectively, are quite different from one 
another, though they also vary sharply. The calculated 

effective viscosity eff~ , presented in Figures 9a, 9b and 

9c, also varies strongly. In fact, the eddy viscosity 

changes from point to point in the computational domain, 
especially in the areas near the riversides and 
boundaries of islands. To solve the problems of 
contaminant transport caused by side discharge, for 
example, the plume usually develops along a region 

near riverside (see Figure 6d and Figure 13), where t
~  

(or eff~ ) actually varies much strongly (see Figure 9). 

This means that t
~  should be precisely calculated using 

suitable higher-order turbulence closure models with 
higher precision, and cannot be simply considered as an 
adjustable constant. 

Figure 11 shows that the concentration profiles along 

the south riverbank, either calculated by ~
~
k  and 

~
~
k  closures, or calculated by wk ~~

  closure, only 

have a quite small difference from one another. This 
means that three utilized depth-integrated two-equation 
turbulence models almost have the same ability to 
simulate plume distributions along riverbank. This 
conclusion   also   coincides  with  the  result  of  author‟s  
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Figure 9: eff~  distributions, calculated by ~
~
k , ~

~
k  and wk ~~

  models. 

 
 
 
previous research that the depth-integrated two-equation 
turbulence models are suitable for modeling strong 
mixing turbulence (Yu and Righetto, 2001). However, the 
abilities and behaviors of different depth-integrated two-
equation turbulence models for rather weak mixing, also 
often encountered in engineering, should be further 
investigated. 

Except for the different definitions of transported 

variables: ~ , w~  and ~ , the order of magnitude of ~  is 

smaller than the order of magnitude of w~ , and much 

smaller than the order of magnitude of ~ . It should be 

noticed that three transported variables: ~ , w~  and ~  

all appear in the denominators of Eqs. (9), (14) and (2), 

which were used to calculate turbulent eddy viscosity t
~ . 

For numerical simulation, the occurrence of numerical 
error is unavoidable, especially in the region near 
irregular boundary. It is clear that a small numerical error, 

caused by solving ~ -eq., for example, will bring on 

larger error for calculating eddy viscosity than the same 

error caused by solving other two equations (i.e., w~ -eq. 

and ~ -eq.). Without doubt, the elevation of the order of 

magnitude of used second turbulent variable, reflecting 
the advance of two-equation turbulence closure models, 
provides a possibility for users to improve their 
computational precision. The insufficiency of traditional 

depth-integrated ~
~
k  turbulence model may be 

avoided by adopting other turbulence models that have 

appeared recently, such as the ~
~
k  model. 

The developed Graphical User Interface of Q3drm1.0 
software can be used in various Windows-based 
microcomputers. The pre- and post-processors of this 
numerical tool, supported by a powerful self-contained 
map support tool together with a detailed help system, 
can help the user to easily compute the flows and 
contaminant transport behaviors in natural waters, 
closed by using three different depth-integrated two-
equation turbulence models, and to draw and analyze 
various 2D and 3D  engineering  graphics  for  computed  
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Figure 10: kP  distributions, calculated by ~
~
k , ~

~
k  and wk ~~

  models 
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Figure 11: Concentrations at a: i from 1 to 366 and j=2; b: i=225 and j from 1 to 38. 
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Figure 12: ~ , ~  and w~  at a: i from 1 to 366 and j=3; b: i=225 and j from 1 to 38. 

 
 
 

 

  
A Case 1, ΔC=0, Time=0                  B Case 2, ΔC=50mg/L, Time=Δt 

  
C Case 3, ΔC=50mg/L, Time=2Δt      D Case 4, ΔC=50mg/L, Time=3Δt 

  
E  Case 5, ΔC=50mg/L, Time=4Δt      F Case 6, ΔC=50mg/L, Time=5Δt 
 

 
 
Figure 13: Contaminant plume development. 

results (Yu, 2013). 
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